888 research outputs found

    Abelian Magnetic Monopoles and Topologically Massive Vector Bosons in Scalar-Tensor Gravity with Torsion Potential

    Full text link
    A Lagrangian formulation describing the electromagnetic interaction - mediated by topologically massive vector bosons - between charged, spin-(1/2) fermions with an abelian magnetic monopole in a curved spacetime with non-minimal coupling and torsion potential is presented. The covariant field equations are obtained. The issue of coexistence of massive photons and magnetic monopoles is addressed in the present framework. It is found that despite the topological nature of photon mass generation in curved spacetime with isotropic dilaton field, the classical field theory describing the nonrelativistic electromagnetic interaction between a point-like electric charge and magnetic monopole is inconsistent.Comment: 18 pages, no figure

    Introduction to the Globus toolkit

    Get PDF

    One Table to Count Them All: Parallel Frequency Estimation on Single-Board Computers

    Get PDF
    Sketches are probabilistic data structures that can provide approximate results within mathematically proven error bounds while using orders of magnitude less memory than traditional approaches. They are tailored for streaming data analysis on architectures even with limited memory such as single-board computers that are widely exploited for IoT and edge computing. Since these devices offer multiple cores, with efficient parallel sketching schemes, they are able to manage high volumes of data streams. However, since their caches are relatively small, a careful parallelization is required. In this work, we focus on the frequency estimation problem and evaluate the performance of a high-end server, a 4-core Raspberry Pi and an 8-core Odroid. As a sketch, we employed the widely used Count-Min Sketch. To hash the stream in parallel and in a cache-friendly way, we applied a novel tabulation approach and rearranged the auxiliary tables into a single one. To parallelize the process with performance, we modified the workflow and applied a form of buffering between hash computations and sketch updates. Today, many single-board computers have heterogeneous processors in which slow and fast cores are equipped together. To utilize all these cores to their full potential, we proposed a dynamic load-balancing mechanism which significantly increased the performance of frequency estimation.Comment: 12 pages, 4 figures, 3 algorithms, 1 table, submitted to EuroPar'1

    Fast online computation of the Qn estimator with applications to the detection of outliers in data streams

    Get PDF
    We present FQN (Fast Qn), a novel algorithm for online computation of the Qn scale estimator. The algorithm works in the sliding window model, cleverly computing the Qn scale estimator in the current window. We thoroughly compare our algorithm for online Qn with the state of the art competing algorithm by Nunkesser et al., and show that FQN (i) is faster, requiring only O(s) time in the worst case where s is the length of the window (ii) its computational complexity does not depend on the input distribution and (iii) it requires less space. To the best of our knowledge, our algorithm is the first that allows online computation of the Qn scale estimator in worst case time linear in the size of the window. As an example of a possible application, besides its use as a robust measure of statistical dispersion, we show how to use the Qn estimator for fast detection of outliers in data streams. Extensive experimental results on both synthetic and real datasets confirm the validity of our approach
    corecore